Separating cyclic subgroups in graph products of groups
نویسندگان
چکیده
منابع مشابه
POS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملSubgroups of Cyclic Groups
In a group G, we denote the (cyclic) group of powers of some g ∈ G by 〈g〉 = {g : k ∈ Z}. If G = 〈g〉, then G itself is cyclic, with g as a generator. Examples of infinite cyclic groups include Z, with (additive) generator 1, and the group 2Z of integral powers of the real number 2, with generator 2. The most basic examples of finite cyclic groups are Z/(m) with (additive) generator 1 and μm = {z...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملSubgroups and cyclic groups
Example 1.2. (i) For every group G, G ≤ G. If H ≤ G and H 6= G, we call H a proper subgroup of G. Similarly, for every group G, {1} ≤ G. We call {1} the trivial subgroup of G. Most of the time, we are interested in proper, nontrivial subgroups of a group. (ii) Z ≤ Q ≤ R ≤ C; here the operation is necessarily addition. Similarly, Q∗ ≤ R∗ ≤ C∗, where the operation is multiplication. Likewise, μn ...
متن کاملSurface Subgroups of Graph Groups
Given a graph T , define the group Fr to be that generated by the vertices of T, with a defining relation xy — yx for each pair x, y of adjacent vertices of T. In this article, we examine the groups Fr, where the graph T is an H-gon, (n > 4). We use a covering space argument to prove that in this case, the commutator subgroup Ff contains the fundamental group of the orientable surface of genus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.05.001